
Geometry Compression
Michael Deering

Sun Microsystems†
-
to

h-
d
,

f
-
s-
-

d
e
.

ed

y
g
s

a-
-

a
-

-
-

d
-
is
d

-

 †2550 Garcia Avenue, UMPK14-202
Mountain View, CA 94043-1100
michael.deering@Eng.Sun.COM (415) 786-6325

ABSTRACT

This paper introduces the concept of Geometry Compression,
lowing 3D triangle data to be represented with a factor of 6 to
times fewer bits than conventional techniques, with only slight los
es in object quality. The technique is amenable to rapid decomp
sion in both software and hardware implementations; if 3D rend
ing hardware contains a geometry decompression unit, applicat
geometry can be stored in memory in compressed format. Geo
try is first represented as a generalized triangle mesh, a data s
ture that allows each instance of a vertex in a linear stream to sp
ify an average of two triangles. Then a variable length compress
is applied to individual positions, colors, and normals. Delta com
pression followed by a modified Huffman compression is used f
positions and colors; a novel table-based approach is used for
mals. The table allows any useful normal to be represented by
18-bit index, many normals can be represented with index deltas
8 bits or less. Geometry compression is a general space-time tr
off, and offers advantages at every level of the memory/interco
nect hierarchy: less storage space is needed on disk, less trans
sion time is needed on networks.

CR Categories and Subject Descriptors: I.3.1 [Computer Graph-
ics]: Hardware Architecture; I.3.3 [Computer Graphics]: Picture
Image GenerationDisplay algorithms; I.3.7 [Computer Graphics]:
Three Dimensional Graphics and Realism.

Additional Keywords and Phrases: 3D graphics hardware, com-
pression, geometry compression.

1 INTRODUCTION

Modern 3D computer graphics makes extensive use of geometr
describe 3D objects. Many graphics techniques are available for s
use. Complex smooth surfaces can be succinctly represented by
level abstractions such as trimmed NURBS. Detailed surface ge
etry can many times be rendered by use of texture maps. But as
ism is added, more and more raw geometry is required, usually in
form of triangles. Position, color, and normal components of the
,
s

-
-

 al-
10
s-

res-
er-
ion
me-
truc-
ec-

ion
-

or
nor-
 an
 of

ade-
n-
mis-

/

y to
uch

 high
om-
real-
 the
se

triangles are typically represented as floating point numbers; an iso
lated triangle can take on the order of 100 bytes or more of storage
describe. To maximize detail while minimizing the number of trian-
gles, triangle re-tessellation techniques can be employed. The tec
niques described in the current paper are complementary: for a fixe
number of triangles, minimize the total bit-size of the representation
subject to quality (and implementation) trade-offs.

While many techniques exist for (lossy and lossless) compression o
2D pixel images, and at least one exists for 2D geometry [2], no cor
responding techniques have previously been available for compre
sion of 3D triangles. This paper describes a viable algorithm for Ge
ometry Compression, which furthermore is suitable for implementa-
tion in real-time hardware. The availability of a decompression unit
within rendering hardware means that geometry can be stored an
transmitted entirely in compressed format. This addresses one of th
main bottlenecks in current graphics accelerators: input bandwidth
It also greatly increases the amount of geometry that can be cach
in main memory. In distributed networked applications, compression
can help make shared VR display environments feasible, by greatl
reducing transmission time. Even low-end video games are goin
true 3D with a vengeance, but without compression even CD-ROM
are limited to a few tens of millions of triangles total storage.

The technique described here can achieve (lossy) compression r
tios of between 6 and 10 to 1, depending on the original representa
tion format and the final quality level desired. The compression
proceeds in four stages. The first is the conversion of triangle dat
into a generalized triangle mesh form. The second is the quantiza
tion of individual positions, colors, and normals. Quantization of
normals includes a novel translation to non-rectilinear representa
tion. In the third stage the quantized values are delta encoded be
tween neighbors. The final stage performs a Huffman tag-base
variable-length encoding of these deltas. Decompression is the re
verse of this process; the decompressed stream of triangle data
then passed to a traditional rendering pipeline, where it is processe
in full floating point accuracy.

2 REPRESENTATION OF GEOMETRY

Today, most major MCAD and many animation modeling packages
allow the use of CSG (constructive solid geometry) and free-form
NURBS in the construction and representation of geometry. The re
sulting trimmed polynomial surfaces are a high-level representation
of regions of smooth surfaces. However for hardware rendering
these surfaces are typically pre-tessellated in software into triangle
prior to transmission to the rendering hardware,even on hardware
that supports some form of hardware NURBS rendering. Further-
more, much of the advantage of the NURBS representation of ge
ometry is for tasks other than real-time rendering. These non-ren
www.manaraa.com

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

ted
ese
y be
, or
so
put
lors

 sig-
t),
ti-
 by

ata

age.

 for
ata
tonic
ipe-
 ac-

n-
 ta-
ted
 in
er-
gular
lem
er-
dering tasks include representation for machining, physical analys
(for example, simulation of turbulence flow), and interchange. Al
so, accurately representing the trimming curves for NURBS is quit
data intensive; as a compression technique, trimmed NURBS ca
be not much more compact than pre-tessellated triangles, at leas
typical rendering tessellation densities. Finally, not all objects ar
compactly represented by NURBS; outside the mechanical eng
neering world of automobile hoods and jet turbine blades, the ente
tainment world of tiger’s teeth and tennis shoes do not have larg
smooth areas where NURB representations would have any adva
tage. Thus while NURBS will continue to be appropriate in many
cases in the modeling world, compressed triangles will be far mo
compact for many classes of application objects.

For many years photorealistic batch rendering has made extens
use of texture map techniques (color texture maps, normal bum
maps, displacement maps) to compactly represent fine geomet
detail. With texture mapping support starting to appear in renderin
hardware, real-time renders can also apply these techniques. Te
ture mapping works quite well for large objects in the far back
ground: clouds in the sky, buildings in the distance. At closer dis
tances, textures work best for 3D objects that are mostly flat: bil
boards, paintings, carpets, marble walls, etc. But for nearby objec
that are not flat, there is a noticeable loss of quality. One techniqu
is the “signboard”, where the textured polygon always swivels to
face the observer. But this technique falls short: when viewed in st
reo, especially head-tracked virtual reality stereo, nearby texture
are plainly perceived as flat. Here even a lower detail but fully thre
dimensional polygonal representation of a nearby object is muc
more realistic. Thus geometry compression and texture mappin
are complementary techniques; each is more appropriate for a d
ferent portion of a scene. What is important to note is that geomet
compression achieves thesame or better representation density as
texture mapping. In the limit they are the same thing; in the Reye
rendering architecture [1] deformation mapped texels are converte
into micro-polygons before being rendered.

Since the very early days of 3D raster computer graphics, polyh
dral representation of geometry has been supported. Specified ty
ically as a list of vertices, edges, and faces, arbitrary geometry c
be expressed. These representations, such as winged-edge d
structures (cf. [6]), were as much designed to support editing of th
geometry as display. Nowadays vestiges of these representatio
live on as interchange formats (for example, Wavefront OBJ)
While theoretically compact, some of the compaction is given u
for readability by use of ASCII representation of the data in inter
change files. Also, few of these formats are set up to be direct
passed to rendering hardware as drawing instructions. Another h
torical vestige is the support of n-sided polygons in such formats
While early rendering hardware could accept such general prim
tives, nearly all of today’s (very much faster) hardware mandate
that all polygon geometry be reduced to triangles before being su
mitted to hardware. Polygons with more than three sides cannot
general be guaranteed to be either planar or convex. If quadrilate
als are accepted as rendering primitives, the fine print somewhe
indicates that they will be (arbitrarily) split into a pair of triangles
before rendering. In keeping with this modern reality, we restric
geometry to be compressed to triangles.

Modern graphics languages specify binary formats for the represe
tation of collections of 3D triangles, usually as arrays of vertex dat
structures. PHIGS PLUS, PEX, XGL, and proposed extensions
OpenGL are of this form. These formats define the storage spa
taken by executable geometry today.

Triangles can be isolated or chained in “zig-zag” or “star” strips. Iris
GL, XGL, and PEX 5.2 define a form of generalized triangle strip tha
can switch from a zig-zag to star-like vertex chaining on a vertex b
vertex basis (at the expense of an extra header word per vertex in X
is
-
e
n

t at
e
i-
r-
e,
n-

re

ive
p

ric
g
x-

-
-
l-
ts
e

e-
s
e
h
g
if-
ry

s
d

e-
p-

an
ata
e
ns
.
p
-
ly
is-
.

i-
s
b-
in
r-
re

t

n-
a
to
ce

-
t
y
GL

and PEX). In addition, a restart code allows multiple disconnec
strips of triangles to be specified within one array of vertices. In th
languages, all vertex components (positions, colors, normals) ma
specified by 32-bit single precession IEEE floating point numbers
64-bit double precision numbers. XGL, IrisGL, and OpenGL al
have some 32-bit integer support. IrisGL and OpenGL support in
of vertex position components as 16-bit integers; normals and co
can be any of these as well as 8-bit components.

As will be seen, positions, colors, and normals can be quantized to
nificantly fewer than 32 bits (single precision IEEE floating poin
with little loss in visual quality. Indeed, such bit-shaving can be u
lized in commercial 3D graphics hardware, so long as supported
appropriate numerical analysis (cf. [3][4]).

3 GENERALIZED TRIANGLE MESH

The first stage of geometry compression is to convert triangle d
into an efficient linear strip form: thegeneralized triangle mesh. This
is a near-optimal representation of triangle data, given fixed stor

The existing concept of a generalized triangle strip structure allows
compact representation of geometry while maintaining a linear d
structure. That is, the geometry can be extracted by a single mono
scan over the vertex array data structure. This is very important for p
lined hardware implementations, a data format that requires random
cess back to main memory during processing is very problematic.

However, by confining itself to linear strips, the generalized tria
gle strip format leaves a potential factor of two (in space) on the
ble. Consider the geometry in figure 1. While it can be represen
by one triangle strip, many of the interior vertices appear twice
the strip. This is inherent in any approach wishing to avoid ref
ences to old data. Some systems have tried using a simple re
mesh buffer to support re-use of old vertices, but there is a prob
with this in practice: in general, geometry does not come in a p
fectly regular rectangular mesh structure.

1
2 3

4 5

6
7

8
9 10 11

12

13
14 15 16

17

18 19 20
21

22
23 24

25 26
27 28

29
30

Generalized Triangle Strip:
R6, O1, O7, O2, O3, M4, M8, O5, O9, O10, M11,
M17, M16, M9, O15, O8, O7, M14, O13, M6,

Start

O12, M18, M19, M20, M14, O21, O15, O22, O16,
O23, O17, O24, M30, M29, M28, M22, O21, M20,
M27, O26, M19, O25, O18

Generalized Triangle Mesh:
R6p, O1, O7p, O2, O3, M4, M8p, O5, O9p, O10, M11,
M17p, M16p, M-3, O15p, O-5, O6, M14p, O13p, M-9,
O12, M18p, M19p, M20p, M-5, O21p, O-7, O22p, O-9,
O23, O-10, O-7, M30, M29, M28, M-1, O-2, M-3,
M27, O26, M-4, O25, O-5

Legend:
First letter: R = Restart, O = Replace Oldest, M = Replace Mi
Trailing “p” = push into mesh buffer
Number is vertex number, -number is mesh buffer reference
where -1 is most recent pushed vertex.

Figure 1. Generalized Triangle Mesh
www.manaraa.com

n
n.

c-
f
an
o-

n.

nd
b
bit
d
ct-
r
r
s
he

-

th
s
ts,

-
g.

od-
of
e
e
for

p-

n
at

. In
hip

e
-

ts
ty)
d
y
ale

th-
nt

 in
rm.
al-

sion.

-
-
e

The generalized technique employed by geometry compression
dresses this problem. Old vertices areexplicitly pushed into a
queue, and then explicitly referenced in the future when the old v
tex is desired again. This fine control supports irregular meshes
nearly any shape. Any viable technique must recognize that stora
is finite; thus the maximum queue length is fixed at 16, requiring
4-bit index. We refer to this queue as themesh buffer. The combi-
nation of generalized triangle strips and mesh buffer references
referred to as ageneralized triangle mesh.

The fixed mesh buffer size requires all tessellators/re-strippers
compressed geometry to break up any runs longer than 16 unique
erences. Since geometry compression is not meant to be program
directly at the user level, but rather by sophisticated tessellators/re-
matters, this is not too onerous a restriction. Sixteen old vertices
lows up to 94% of the redundant geometry to avoid being re-specifi

Figure 1 also contains an example of a general mesh buffer rep
sentation of the surface geometry.

The language of geometry compression supports the four vertex
placement codes of generalized triangle strips (replace oldest,
place middle, restart clockwise, and restart counterclockwise), a
adds another bit in each vertex header to indicate if this vert
should be pushed into the mesh buffer or not. The mesh buffer r
erence command has a 4-bit field to indicate which old verte
should be re-referenced, along with the 2-bit vertex replaceme
code. Mesh buffer reference commands donot contain a mesh buff-
er push bit; old vertices can only be recycled once.

Geometry rarely is comprised purely of positional data; generally
normal and/or color are also specified per vertex. Therefore, me
buffer entries contain storage for all associated per-vertex inform
tion (specifically including normal and color). For maximum spac
efficiency, when a vertex is specified in the data stream, (per vert
normal and/or color information should be directly bundled with th
position information. This bundling is controlled by two state bits
bundle normals with vertices (bnv), andbundle colors with vertices
(bcv). When a vertex is pushed into the mesh buffer, these bits con
if its bundled normal and/or color are pushed as well. During a me
buffer reference command, this process is reversed; the two bits s
ify if a normal and/or color should be inherited from the mesh buff
storage, or inherited from thecurrent normal or current color. There
are explicit commands for setting these two current values. An i
portant exception to this rule occurs when an explicit “set current n
mal” command is followed by a mesh buffer reference, with the b
state bit active. In this case, the former overrides the mesh buffer n
mal. This allows compact representation of hard edges in surface
ometry. The analogous semantics are also defined for colors, allo
ing compact representation of hard edges in textures.

Two additional state bits control the interpretation of normals and c
ors when the stream of vertices is turned into triangles. Thereplicate
normals over triangle (rnt) bit indicates that the normal in the final ver-
tex that completes a triangle should be replicated over the entire tr
gle. Thereplicate colors over triangle (rct) bit is defined analogously.

4 COMPRESSION OF XYZ POSITIONS

The 8-bit exponent of 32-bit IEEE floating-point numbers allows po
sitions literally to span the known universe: from a scale of 15 billio
light years, down to the radius of sub-atomic particles. However f
any given tessellated object, the exponent is really specified just o
by the current modeling matrix; within a given modeling space, th
object geometry is effectively described with only the 24-bit fixed
point mantissa. Visually, in many cases far fewer bits are need
thus the language of geometry compression supports variable qu
tization of position data down to as little a one bit. The question th
is what is the maximum number of bits that should be supporte
Based on empirical visual tests we have done, as well as silicon
ad-

er-
 of
ge
 a

 is

for
 ref-
med
for-
al-
ed.

re-

 re-
re-
nd
ex
ef-
x
nt

 a
sh
a-
e
ex)
e
:

trol
sh

pec-
er

m-
or-
nv
or-

 ge-
w-

ol-

ian-

-
n
or
nce
e
-

ed;
an-
en
d?
im-

plementation considerations, we decided to limit our implementatio
to support of at most 16 bits of precision per component of positio

We still assume that the position and scale of the local modeling spa
es are specified by full 32-bit or 64-bit floating-point coordinates. I
sufficient numerical care is taken, multiple such modeling spaces c
be stitched together without cracks, forming seamless geometry c
ordinate systems with much greater than 16-bit positional precisio

Most geometry is local, so within the 16-bit (or less) modeling
space (of each object), the delta difference between one vertex a
the next in the generalized mesh buffer stream is very likely to
less than 16 bits in significance. Indeed one can histogram the
length of neighboring position deltas in a batch of geometry, an
based upon this histogram assign a variable length code to compa
ly represent the vertices. The typical coding used in many othe
similar situations is customized Huffman code; this is the case fo
geometry compression. The details of the coding of position delta
are postponed until section 7, where they can be discussed in t
context of color and normal delta coding as well.

5 COMPRESSION OF RGBCOLORS

We treat colors similar to positions, but with a smaller maximum ac
curacy. Thus rgbα color data is first quantized to 12-bit unsigned frac-
tion components. These are absolute linear reflectivity values, wi
1.0 representing 100% reflectivity. An additional parameter allow
color data effectively to be quantized to any amount less than 12 bi
i.e. the colors can all be within a 5-5-5 rgb color space. (Theα field
is optional, controlled by thecolor alpha present (cap) state bit.) Note
that this decision doesnot necessarily cause mock banding on the fi-
nal rendered image; individual pixel colors are still interpolated be
tween these quantized vertex colors, and also are subject to lightin

After considerable debate, it was decided to use the same delta c
ing for color components as is used for positions. Compression
color data is where geometry compression and traditional imag
compression face the most similar problem. However, many of th
more advanced techniques for image compression were rejected
geometry color compression because of the difference in focus.

Image compression (for example, JPEG [7]) makes several assum
tions about the viewing of the decompressed data thatcannot be
made for geometry compression. In image compression, it is know
a priori that the pixels appear in a perfectly rectangular array, and th
when viewed, each pixel subtends a narrow range of visual angles
geometry compression, one has almost no idea what the relations
between the viewer and the rasterized geometry will be.

In image compression, it is known that the spatial frequency on th
viewer’s eyes of the displayed pixels is likely higher than the hu
man visual system’s color acuity. This is why colors are usually
converted to yuv space (cf. [6]), so that the uv color componen
can be represented at a lower spatial frequency than the y (intensi
component. Usually the digital bits representing the sub-sample
uv components are split up among two or more pixels. Geometr
compression can’t take advantage of this because the display sc
of the geometry relative to the viewer’s eye is not fixed. Also, given
that compressed triangle vertices are connected to 4 - 8 or more o
er vertices in the generalized triangle mesh, there is no consiste
way of sharing “half” the color information across vertices.

Similar arguments apply for the more sophisticated transforms used
traditional image compression, such as the discrete cosine transfo
These transforms assume a regular (rectangular) sampling of pixel v
ues, and require a large amount of random access during decompres

Another traditional approach avoided was pseudo-color look-up ta
bles. Any such look-up table would have to have a (fixed) maxi
mum size, and yet still is a very expensive resource for real-tim
processing. While pseudo-color indices would result in a slightly
www.manaraa.com

e-

ign
its
we
e.

nti-
.
ther
d.

 of
n

in-
 a

ng
al

s,
se
be
di-

ro-
ults
if-

nt
ur-
the
We

g
n-

an-
an

ad-
and
 6-
als

 But
 the
.

,

xis;

e.
higher compression ratio for certain scenes, it was felt that the r
model is more general and considerably less expensive.

Finally, the rgb values are represented as linear reflectance val
In theory, if all the effects of lighting are known ahead of time, a b
or two could have been shaved off the representation if the rgb co
ponents had been represented in a nonlinear, or perceptually lin
(sometime referred to as gamma corrected) space. However, in g
eral, the effects of lighting are not predictable, and considerab
hardware resources would have had to be expended to convert f
nonlinear to linear light on the fly.

6 COMPRESSION OF NORMALS

Probably the most innovative concept in geometry compression
the method of compressing surface normals. Traditionally 96-b
normals (three 32-bit IEEE floating-point numbers) are used in c
culations to determine 8-bit color intensities. 96 bits of informatio
theoretically could be used to represent 296 different normals,
spread evenly over the surface of a unit sphere. This is a normal
ery 2-46 radians in any direction. Such angles are so exact th
spreading out angles evenly in every direction from earth you cou
point out any rock on Mars with sub-centimeter accuracy.

But for normalized normals, the exponent bits are effectively u
used. Given the constraint , at least one of , , or

must be in the range of 0.5 to 1.0. During rendering, this normal w
be transformed by a composite modeling orientation matrix

.

Assuming the typical implementation in which lighting is per
formed in world coordinates, the view transform is not involved i
the processing of normals. If the normals have been pre-norm
ized, then to avoid redundant re-normalization of the normals, t
composite modeling transformation matrix T is typically pre-nor
malized to divide out any scale changes, and thus:

, etc.

During the normal transformation, floating-point arithmetic hard
ware effectively truncates all additive arguments to the accuracy
the largest component. The result is that for a normalized normal,
ing transformed by a scale preserving modeling orientation matrix
all but a few special cases, the numerical accuracy of the transform
normal value is reduced to no more than 24-bit fixed-point accura

Even 24-bit normal components are still much higher in angular a
curacy than the (repaired) Hubble space telescope. Indeed, in s
systems, 16-bit normal components are used. In [3]9-bit normal
components were successfully used. After empirical tests, it w
determined that an angular density of 0.01 radians between norm
gave results that were not visually distinguishable from finer repr
sentations. This works out to about 100,000 normals distribut
over the unit sphere. In rectilinear space, these normals still requ
high accuracy of representation; we chose to use 16-bit compone
including one sign and one guard bit.

This still requires 48 bits to represent a normal. But since we a
only interested in 100,000 specific normals, in theory a single 1
bit index could denote any of these normals. The next section sho
how it is possible to take advantage of this observation.

Normal as Indices

The most obvious hardware implementation to convert an index
a normal on the unit sphere back into a value, is by tab

look-up. The problem is the size of the table. Fortunately, there a
several symmetry tricks that can be applied to vastly reduce the s

N 1= Nx Ny Nz

N' N T⋅=

T0 0,
2

T1 0,
2

T2 0,
2

+ + 1=

Nx Ny Nz
gb

ues.
it
m-
ear
en-
le

rom

 is
it

al-
n

 ev-
at
ld

n-
,

ill
T:

-
n
al-
he
-

-
 of
 be-
, in

ed
cy.

c-
ome

as
als
e-
ed
ire
nts

re
7-
ws

 of
le

re
ize

of the table (by a factor of 48). (In [5], effectively the same symm
tries are applied to compress processed voxel data.)

First, the unit sphere is symmetrical in the eight quadrants by s
bits. In other words, if we let three of the normal representation b
be the three sign bits of the xyz components of the normal, then
only need to find a way to represent one eighth of the unit spher

Second, each octant of the unit sphere can be split up into six ide
cal pieces, by folding about the planes , , and
(See Figure 2.) The six possible sextants are encoded with ano
three bits. Now only 1/48 of the sphere remains to be represente

This reduces the 100,000 entry look-up table in size by a factor
48, requiring only about 2,000 entries, small enough to fit into a
on-chip ROM look-up table. This table needs 11 address bits to
dex into it, so including our previous two 3-bit fields, the result is
grand total of 17 bits for all three normal components.

Representing a finite set of unit normals is equivalent to positioni
points on the surface of the unit sphere. While no perfectly equ
angular density distribution exists for large numbers of point
many near-optimal distributions exist. Thus in theory one of the
with the same sort of 48-way symmetry described above could
used for the decompression look-up table. However, several ad
tional constraints mandate a different choice of encoding:

1) We desire a scalable density distribution. This is one in which ze
ing more and more of the low order address bits to the table still res
in fairly even density of normals on the unit sphere. Otherwise a d
ferent look-up table for every encoding density would be required.

2) We desire a delta-encodable distribution. Statistically, adjace
vertices in geometry will have normals that are nearby on the s
face of the unit sphere. Nearby locations on the 2D space of
unit-sphere surface are most succinctly encoded by a 2D offset.
desire a distribution where such a metric exists.

3) Finally, while the computational cost of the normal encodin
process is not too important, in general, distributions with lower e
coding costs are preferred.

For all these reasons, we decided to utilize a regular grid in the
gular space within one sextant as our distribution. Thus rather th
a monolithic 11-bit index, all normals within a sextant aremuch
more conveniently represented as two 6-bit orthogonal angular
dresses, revising our grand total to 18-bits. Just as for positions
colors, if more quantization of normals is acceptable, then these
bit indices can be reduced to fewer bits, and thus absolute norm
can be represented using anywhere from 18 to as few as 6 bits.
as will be seen, we can delta encode this space, further reducing
number of bits required for high quality representation of normals

Normal Encoding Parameterization

Points on a unit radius sphere are parameterized by two angles

and , using spherical coordinates. is the angle about the y a

x y= x z= y z=

Figure 2. Encoding of the six sextants of each octant of a spher

001

000

010

011

100

101

x < y

x = y

x > y

x > zx = zx < z

y < z

y = z

y > z

X

Y

Z

θ
φ θ
www.manaraa.com

to
y
by
e

ted
lue

act.

t of
 av-
 to

ch-
 our

m-

le

-

t:
e

l-

le
ll
e
r-
e
n

d:

-

-
d-

r

f

ol-
nt

-
.

 is the longitudinal angle from the y=0 plane. The mapping b
tween rectangular and spherical coordinates is:

 (1)

Points on the sphere are folded first by octant, and then by sort o
of xyz into one of six sextants. All the table encoding takes place
the positive octant, in the region bounded by the half spaces:

This triangular-shaped patch runs from 0 toπ/4 radians in , and
from 0 to as much as 0.615479709 radians in : .

Quantized angles are represented by two n-bit integers and

where n is in the range of 0 to 6. For a given n, the relationship
tween these indices and is

 (2)

These two equations show how values of and can be co

verted to spherical coordinates and , which in turn can be co
verted to rectilinear normal coordinate components via equation

To reverse the process, e.g. to encode a given normal N into

, one cannot just invert equation 2. Instead, the N must be fi
folded into the canonical octant and sextant, resulting in N’. The
N’ must be dotted with all quantized normals in the sextant. For

fixed n, the values of and that result in the largest (neare
unity) dot product define the proper encoding of N.

Now the complete bit format of absolute normals can be given. T
uppermost three bits specify the octant, the next three bits the s

tant, and finally two n-bit fields specify and . The 3-bit sex

tant field takes on one of six values, the binary codes for which
shown in figure 2.

This discussion has ignored some details. In particular, the three
mals at the corners of the canonical patch are multiply represented
8, and 12 times). By employing the two unused values of the sex
field, these normals can be uniquely encoded as 26 special norm

This representation of normals is amenable to delta encoding, at l
within a sextant. (With some additional work, this can be extended
sextants that share a common edge.) The delta code between

normals is simply the difference in and : and .

7 COMPRESSION TAGS

There are many techniques known for minimally representing va
able-length bit fields (cf. [7]). For geometry compression, we ha
chosen a variation of the conventional Huffman technique.

The Huffman compression algorithm takes in a set of symbols to
represented, along with frequency of occurrence statistics (his
grams) of those symbols. From this, variable length, uniquely ide
tifiable bit patterns are generated that allow these symbols to be r
resented with a near-minimum total number of bits, assuming th
symbols do occur at the frequencies specified.

Many compression techniques, including JPEG [7], create uniq
symbols as tags to indicate the length of a variable-length data-fi
that follows. This data field is typically a specific-length delta va
ue. Thus the final binary stream consists of (self-describing leng
variable length tag symbols, each immediately followed by a da
field whose length is associated with that unique tag symbol.

φ

x θcos φcos⋅= y φsin= z θsin φcos⋅=

x z≥ z y≥ y 0≥

θ
φ φmax

θ̂n φ̂n

θ φ

θ θ̂n() φmax n θ̂n–() 2
n⁄⋅ 

 
tanasin=

φ φ̂n() φmax φ̂n 2
n⁄⋅=

θ̂n φ̂n

θ φ

θ̂n

φ̂n

θ̂n φ̂n

θ̂n φ̂n

θ̂n φ̂n ∆θ̂n ∆φ̂n
e-

rder
 in

,

be-

n-

n-
 1.

and

rst
n
 a

st

he
ex-

-

are

nor-
 (6,

tant
als.

east
 to
 two

ri-
ve

 be
to-
n-
ep-
at

ue
eld
l-
th)
ta

The binary format for geometry compression uses this technique
represent position, normal, and color data fields. For geometr
compression, these <tag, data> fields are immediately preceded
(a more conventional computer instruction set) op-code field. Thes
fields, plus potential additional operand bits, are referred to asge-
ometry instructions (see figure 3).

Traditionally, each value to be compressed is assigned its own associa
label, e.g. an xyz delta position would be represented by three tag-va
pairs. However, the delta xyz values arenot uncorrelated, and we can get
both a denser and simpler representation by taking advantage of this f
In general, the xyz deltas statistically point equally in all directions in
space. This means that if the number of bits to represent the larges
these deltas is n, then statistically the other two delta values require an
erage of n-1.4 bits for their representation. Thus we made the decision
use asingle field-length tag to indicate the bit length of∆x, ∆y, and∆z.
This also means that we cannot take advantage of another Huffman te
nique that saves somewhat less than one more bit per component, but
bit savings by not having to specify two additional tag fields (for∆y and
∆z) outweigh this. A single tag field also means that a hardware deco
pression engine can decompress all three fields in parallel, if desired.

Similar arguments hold for deltas of rgbα values, and so here also
a single field-length tag indicates the bit-length of the r, g, b, andα
(if present) fields.

Both absolute and delta normals are also parameterized by a sing
value (n), which can be specified by a single tag.

We chose to limit the length of the Huffman tag field to the relative
ly small value of six bits. This was done to facilitate high-speed
low-cost hardware implementations. A 64-entry tag look-up table
allows decoding of tags in one clock cycle. Three such tables exis
one each for positions, normals, and colors. The tables contain th
length of the tag field, the length of the data field(s), a data norma
ization coefficient, and an absolute/relative bit.

One additional complication was required to enable reasonab
hardware implementations. As will be seen in the next section, a
instruction are broken up into an eight-bit header, and a variabl
length body. Sufficient information is present in the header to dete
mine the length of the body. But in order to give the hardware tim
to process the header information, the header of one instructio
must be placed in the streambefore the body of the previous instruc-
tion. Thus the sequence ... B0 H1B1 H2B2 H3 ... has to be encode

... H1 B0 H2 B1 H3 B2

8 GEOMETRY COMPRESSION INSTRUCTIONS

All of the pieces come together in the geometry compression in
struction set, seen in figure 3.

The Vertex command specifies a Huffman compressed delta en
coded position, as well as possibly a normal and/or color, depen
ing on bundling bits (bnv and bcv). Two additional bits specify a
vertex replacement code (rep); another bit controls mesh buffe
pushing of this vertex (mbp).

TheNormal command specifies a new current normal; theColor
command a new current color. Both also use Huffman encoding o
delta values.

The Set State instruction updates the five state bits: rnt, rct, bnv,
bcv, and cap.

The Mesh Buffer Reference command allows any of the sixteen
most recently pushed vertices (and associated normals and/or c
ors) to be referenced as the next vertex. A 2-bit vertex replaceme
code is also specified.

TheSet Table command sets entries in one of the three Huffman de
coding tables (Position, Normal, or Color) to the entry value specified
www.manaraa.com

enta-
o-

ow
6-

unt
 in
an-
ngs

m-
ng
n
on,
yet
h
es-

h
ds.

ti-
ut
s,

he
the
he
 im-

he
th-

the
time
ge
too
.

for
ime
d
-
re
lly
ite
-

go-
b.
r
ved
ob
e

s-
 3D
nd/
ed
es-
ok
le-
n-
o-
ThePass Through command allows additional graphics state no
controlled directly by geometry compression to be updated in-lin

TheVNOP (Variable length no-op) command allows fields within
the bit stream to be aligned to 32-bit word boundaries, so th
aligned fields can be patched at run-time.

9 RESULTS

The results are presented in figure 5 a-l and table 1. Figures 5 a-g
of the same base object (a triceratops), but with different quantizat
thresholds on positions and normals. Figure 5a is the original full flo
ing-point representation: 96-bit positions, and 96-bit normals, whic
we denote by P96/N96. Figure 5b and 5c show the effects of purely
sitional quantization: P36/N96 and P24/N96, respectively. Figures
and 5e show only normal quantization: P96/N18 and P96/N12. F
ures 5f and 5g show combined quantization: P48/N18 and P30/N3

Figures 5 h-l show only the quantized results: for a galleon (P3
N12), a Dodge Viper (P36/N14), two views of a ‘57 Chevy (P33
N13), and an insect (P39/N15).

Without zooming into the object, positional quantization much
above 24-bits has virtually no significant visible effect. As the nor
mal quantization is reduced, the positions of specular highlights o
the surfaces are offset slightly, but it is not visually apparent th
these changes are reductions in quality, at least above 12 bits
normal. Note that the quantization parameters were photograph
with the objects: otherwise even the author was not able to dist
guish between the original and most compressed versions.

Compression (and other) statistics on these objects are summarize
table 1. The final column shows the compression ratios achieved o
existing executable geometry formats. While the total byte count of t
compressed geometry is an unambiguous number (and shown in
penultimate column), to state a compression ratio, some assumpti

Vertex

Normal

0 1

1 1

rep
m
b
p

Color
1 0

Pos bits 0-5 Pos bits 6-n Norm bits Color bits

Norm bits 0-5 Norm bits 6-n

Color bits 0-5 Color bits 6-n

Mesh Buffer Reference

0 0 Index1
r
e
p

r
e
p

Set State

0 0 0 1 1

Set Table
0 0 0 1 0

Pass Through
0 0 0 0 1 Address Data

VNOP
0 0 0 0 0 Bit Count 0’s0 0 0

tag ∆x ∆y ∆zPosition:

tag ∆θt ∆φtNormal:

tag ∆r ∆g ∆bColor: ∆α

Figure 3. Geometry Compression Instruction Set

(or absolute index)

r
n
t

r
c
t

b
n
v

b
c
v

c
a
p

Address Range Entry

^ ^
t
e.

at

 are
ion
at-
h

po-
5d
ig-
6.

0/
/

-
n

at
per
ed

in-

d in
ver
he
 the
ons

must be made about the object’s uncompressed executable repres
tion. We assumed optimized generalized triangle strips, with both p
sitions and normals represented by floating-point values. This is h
the “original size” column was calculated. To see the effect of pure 1
bit fixed point simple strip representation, we also show the byte co
for this mode of OpenGL (the average strip length went way down,
the range of 2-3). Because few if any commercial products take adv
tage of generalized triangle strips, the potential memory space savi
are considerably understated by the numbers in the table.

The earlier columns in the table break down the bit usage by co
ponent: just position tag/data, just normal tag/data, and everythi
else (overhead). The “quant” columns show the quantizatio
thresholds. All results in table 1 are (measured) actual compressi
with one exception. Because our software compressor does not
implement a full meshifying algorithm, we present estimated mes
buffer results in parentheses (always next to actual results). This
timate assumes a 42% hit ratio in the mesh buffer.

While certainly there is statistical variation between objects (wit
respect to compression ratios), we have noted some general tren
When compressing using the highest quality setting of the quan
zation knobs (P48/N18), the compression ratios are typically abo
6. When most objects start showing visible quantization artifact
the ratios are nearly 10.

10GEOMETRY COMPRESSION SOFTWARE

So far the focus has been on the justification and description of t
geometry compression format. This section addresses some of
issues that arise when actually performing the compression; t
next section addresses issues related to hardware and software
plementation of decompression.

An important measure for any form of compression is the ratio of t
time required for compression relative to decompression. Several o
erwise promising techniques for image compression have failed in
marketplace because they require several thousand times more
to compress than to decompress. It is acceptable for off-line ima
compression to take 60X more time than decompression, but not
much more; for real-time video conferencing the ratio should be 1

Geometry compressiondoes not have this real-time requirement.
Even if geometry is being constructed on the fly, most techniques
creating geometry (such as CSG) take orders of magnitude more t
than displaying geometry. Also, unlike the continuous images foun
in movies, in most applications of geometry compression a com
pressed 3D object will be displayed for many sequential frames befo
being discarded. If the 3D object needs to be animated, this is typica
done with modeling matrices. Indeed for a CD-based game, it is qu
likely that an object will be decompressed billions of times by custom
ers, while compressed only once by the authoring company.

Like some other compression systems, geometry compression al
rithms can have a compression-time vs. compression-ratio kno
Thus for a given target level of quality, the more time allowed fo
compression, the better the compression ratio that can be achie
by a geometry compression system. There is a corresponding kn
for quality of the resulting compressed 3D object. The lower th
quality knob, the better the compression ratio achieved.

We have found an esthetic judgment involved in geometry compre
sion, based upon our experiences with the system so far. Some
objects start to look bad when the target quantization of normals a
or positions is reduced even a little, others are visually unchang
even with a large amount of quantization. Sometimes the compr
sion does cause visible artifacts, but may only make the object lo
different, not necessarily lower in quality. Indeed in one case an e
phant started looking better (more wrinkled skin) the more we qua
tized his normals! The point is that there is also a subjective comp
www.manaraa.com

as
able
e-

n-
ns.

-
tt
nd

ge

.
A
of

f-
3

nent to geometry compression. In any highly compressed case,
original artist or modeling person that created the 3D object shou
also pass (interactive) judgment on the visual result of the compr
sion. He or She alone can really say if the compressed object has
tured the spirit of the original intent in creating the model.

But once a model has been createdand compressed, it can be put
into a library, to be used as 3D clip-art at the system level.

Below is an outline of the geometry compression algorithm:

1. Input explicit bag of triangles to be compressed, along wi
quantization thresholds for positions, normals, and colors.

2. Topologically analyze connectivity, mark hard edges in no
mals and/or color.

3. Create vertex traversal order & mesh buffer references.

4. Histogram position, normal, and color deltas.

5. Assign variable length Huffman tag codes for deltas, bas
on histograms, separately for positions, normals, colors.

6. Generate binary output stream by first outputting Huffma
table initializations, then traversing the vertices in order, ou
putting appropriate tag and delta for all values.

Implementation status: a compressor of Wavefront OBJ format h
been implemented. It supports compression of positions and n
mals, and creates full generalized triangle strips, but does not
implement a full meshifying algorithm. The geometry compressio
format supports many more sophisticated compression opportu
ties than our existing compressor utilizes. We hope in the future
explore variable precision geometry, and fine structured updates
the compression tables. Eventually modelers should generate co
pressed geometry directly; our current compressor spends a lo
time figuring out geometric details that the tessellator already kne
The current (un-optimized) software can compress ~3K tris/sec.

11GEOMETRY DECOMPRESSION HARDWARE

While many of the techniques employed by geometry compressi
are universal, some of the details were specifically designed to
low-cost, high-speed hardware implementations. A geometry com
pression format designed purely for software decompressi
would, of course, be a little different.

The features that make the geometry compression instruction
amenable to hardware implementation include: one pass sequen
processing, limited local storage requirements, tag look-up rath
than usual Hamming bit-sequential processing, and most arithme
is comprised of shifts, adds, and look-ups.

Below is an outline of the geometry decompression algorithm:

1. Fetch the rest of the next instruction, and the first 8 bits of th
instruction after that.

2. Using the tag table, expand any compressed value fields
full precision.

3a.If values are relative, add to current value; otherwise replac

3b.If mesh buffer reference, access old values.

3c.If other command, do housekeeping.

4. If normal, pass index through ROM table to obtain ful
 values.

5. Output values in generalized triangle strip form to next stag

Implementation status: a software decompressor has been imp
mented, and successfully decompresses compressed geometry
rate of ~10K triangles/second. Hardware designs are in progres
simplified block diagram can be seen in figure 4.

Nx Ny Nz
 the
ld

es-
cap-

th

r-

ed

n
t-

as
or-
yet
n
ni-
 to
 of
m-

t of
w.

on
al-

-
on

set
tial
er
tic

e

 to

e.

l

e.

le-
, at a
s, a

12CONCLUSIONS

A new technique for (lossy) compression of 3D geometric data h
been presented. Compression ratios of 6 to 10 to one are achiev
with little loss in displayed object quality. The technique has been d
signed for the constraints of low cost inclusion into real-time 3D re
dering hardware, but is also of use in pure software implementatio

ACKNOWLEDGEMENTS

The author would like to thank Aaron Wynn for his work on the hard
ware and the meshifier, Michael Cox for help with the writing, Sco
Nelson for comments on the paper and help with figures 1 & 2, a
Viewpoint DataLabs for the 3D objects used in figure 5.

REFERENCES

1. Cook, Robert, L. Carpenter, and E. Catmull. The Reyes Ima
Rendering Architecture. Proceedings of SIGGRAPH ‘87
(Anaheim, CA, July 27-31, 1987). InComputer Graphics 21,
4 (july 1987), 95-102.

2. Danskin, John.Compressing the X Graphics Protocol, Ph.D.
Thesis, Princeton University, 1994.

3. Deering, Michael, S. Winner, B. Schediwy, C. Duffy and N
Hunt. The Triangle Processor and Normal Vector Shader:
VLSI system for High Performance Graphics. Proceedings
SIGGRAPH '88 (Atlanta, GA, Aug 1-5, 1988). InComputer
Graphics 22, 4 (July 1988), 21-30.

4. Deering, Michael, and S. Nelson. Leo: A System for Cost E
fective Shaded 3D Graphics. Proceedings of SIGGRAPH ‘9
(Anaheim, California, August 1-6, 1993). InComputer
Graphics (August 1993), 101-108.

5. Durkin, James, and J. Hughes.Nonpolygonal Isosurface Ren-
dering for Large Volume Datasets. Proceedings of Visualiza-
tion ‘94, IEEE, 293-300.

6. Foley, James, A. van Dam, S. Feiner and J Hughes.Computer
Graphics: Principles and Practice, 2nd ed., Addison-Wesley,
1990.

7. Pennebaker, William, and J. Mitchell.JPEG Still Image Com-
pression Standard, Van Nostrand Reinhold, 1993.

data in

Input Reg

Shift & Merge

Instruction Buf

Shift off tag

Arith Shift right

Mask off excess

Huffman
Table

X Y Z
R G B α
θ φ +

ROM

Sort sextant

2’s comp

octant

nx,ny,nz

Normal

mux

x,y,z r,g,b,α
Figure 4. Decompression hardware block diagram (simplified).
www.manaraa.com

5a 5b 5c

5d 5e 5f

5g 5h 5i

5j 5k 5l

Table 1:

object
name

#∆’s
∆strip
length

overhead/
vertex

xyz
quant

bits/
xyz

norm
quant

bits/
norm

bits/tri
original size

(bytes)
OpenGL

16-bit comp
compressed size

(bytes)
compression

 ratio

triceratops 6,039 15.9 8.2 48 35.8 18 16.9 61.3 (41.2) 179,704 151,032 46,237 (31,038) 3.9X (5.8X)

triceratops 6,039 15.9 8.2 30 17.8 12 11.0 36.0 (26.5) 179,704 151,032 27,141 (19,959 6.7X (9.1X)

galleon 5,118 12.2 8.2 30 22.0 12 11.0 41.3 (29.7) 155,064 105,936 26,358 (18,954) 5.9X (8.2X)

viper 58,203 23.8 8.2 36 20.1 14 10.9 37.5 (27.2) 1,698,116 1,248,492 272,130 (197,525) 6.3X (8.6X)

57chevy 31,762 12.9 8.2 33 17.3 13 10.9 35.8 (26.4) 958,160 565,152 141,830 (104,691) 6.8X (9.2X)

insect 229,313 3.3 8.7 39 26.3 15 12.8 58.7 (40.9) 8,383,788 5,463,444 1,680,421 (1,170,237) 5.0X (7.2X)
www.manaraa.com

